Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.357
Filtrar
1.
Behav Brain Res ; 462: 114867, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38246394

RESUMO

Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).


Assuntos
Núcleo Hipotalâmico Paraventricular , Serotonina , Ratos , Feminino , Masculino , Animais , Fenclonina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Serotonina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Triptofano Hidroxilase/metabolismo
2.
Behav Brain Res ; 461: 114819, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38141783

RESUMO

Behavioural interactions between conspecifics rely on the appreciation of social cues, which is achieved through biochemical switching of pre-existing neurophysiological pathways. Serotonin is one of the major neurotransmitters in the central nervous system responsible for the modulation of physiological and behavioural traits, in particular social behaviour. The relative importance of serotonin in modulating optimal social responses to the available social information (i.e., social competence) is yet unknown. Here we investigate how serotonin and the serotonin 1 A receptor (5-HT1A) modulate social competence in a competitive context. In the cooperatively breeding cichlid Neolamprologus pulcher, we pharmacologically manipulated the serotonin availability and 5-HT1A activity to test their effects on social behaviours during an asymmetric contest between the owner of a defended territory containing a shelter and an intruder devoid of a territory. In this contest, the adequate response by the intruders, the focal individuals in our study, is to show submissive behaviour in order to avoid eviction from the vicinity of the shelter. While the serotonin enhancer Fluoxetine did not affect the frequency of submission towards territory owners, reducing serotonin by a low dosage of 4-Chloro-DL-phenylalanine (PCPA) increased submissive behaviour. Furthermore, threat displays towards territory owners were reduced at high dosages of Fluoxetine and also at the lowest dosage of PCPA. 5-HT1A activation increased threat displays by intruders, indicating that this receptor may not be involved in regulating social competence. We conclude that serotonin, but not its receptor 5-HT1A plays an important role in the regulation of social competence.


Assuntos
Ciclídeos , Serotonina , Animais , Habilidades Sociais , Fluoxetina/farmacologia , Comportamento Social , Ciclídeos/fisiologia , Fenclonina/farmacologia , Receptor 5-HT1A de Serotonina
3.
J Ethnopharmacol ; 319(Pt 3): 117331, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858748

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Insomnia occurs frequently in modern society, and its common symptoms include difficulty in falling asleep and decreased sleep quality and time, memory, and attention. With the advantages of having few side-effects and reduced drug-dependence, a compound traditional Chinese medicine (TCM) prescription called Huaxiang Anshen Decoction (HAD) has been widely used in clinical practice in China mainly for primary insomnia treatment. Although the effects of volatile oils from TCM herbs have been increasingly reported, volatile oils in HAD are conventionally neglected because of its preparation process and clinical usage. Therefore, exploring the anti-insomnia effects of volatile oils from HAD is of great importance. AIM OF THE STUDY: The sedative and hypnotic effects of the conventional aqueous extracts, the volatile oils from HAD, and their combinations were investigated. METHODS: The main components in HAD volatile oils (HAD-Oils), were analyzed through gas chromatography-mass spectrometry (GC-MS). The HAD volatile oil inclusion complex (HAD-OIC) was prepared with ß-cyclodextrin, and characterized. P-chlorophenylalanine (PCPA) was used to induce insomnia mice model and the test groups of HAD aqueous extract (HAD-AE), HAD-OIC and their combination (AE-OIC). An open field test was used in evaluating the mice's activities, and the levels of 5-hydroxytryptamine (5-HT) in mice sera, glutamate (Glu) in the hypothalamus, and γ-aminobutyric acid (γ-GABA) and dopamine (DA) in the brain tissues were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS: A total 74 components in HAD-Oil were determined by GC/MS, and cyperenone (20.46%) and α-cyperone (10.39%) had the highest relative content. The characterization results of the physical phase showed that volatile oils were successfully encapsulated by ß-cyclodextrin and HAD-OIC was produced. The average encapsulation rates of cyperenone and α-cyperone were 79.93% and 71.96%, respectively. The results of pharmacology study showed that all the test groups increased the body weight and decreased voluntary activity when compared with the model group (P < 0.05). The HAD-AE, HAD-OIC, and AE-OIC groups increased the levels of 5-HT in the sera and DA and Glu/γ-GABA in the brains, and AE-OIC groups showed better performance than the other test groups. CONCLUSIONS: HAD-Oil exerts sedative and hypnotic effects, which are increased when it is used with HAD-AEs. This result provides a favorable experimental evidence that volatile oils should be retained for the further development of HAD.


Assuntos
Óleos Voláteis , Distúrbios do Início e da Manutenção do Sono , beta-Ciclodextrinas , Camundongos , Animais , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Óleos Voláteis/química , Fenclonina/farmacologia , Serotonina , Hipnóticos e Sedativos/farmacologia , Ácido gama-Aminobutírico , Dopamina
4.
Bull Exp Biol Med ; 175(6): 814-821, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37979022

RESUMO

We studied the effect of reduced tryptophan hydroxylase (TPH) activity and short daylight exposure on the behavior and the 5-HT system of the brain in D. rerio. Male and female D. rerio were exposed for 30 days to standard (12:12 h light:dark) and short (4:20 h light:dark) photoperiods in the presence or absence of TPH inhibitor (p-chlorophenylalanine, pCPA, 5 mg/liter). On day 31, the fish behavior in the "novel tank diving" test, their sex and body weight were determined, and the levels of pCPA, 5-HT, and its metabolite 5-HIAA were measured by HPLC; the levels of the key genes encoding metabolism enzymes (Tph1a, Tph1b, Tph2, and Mao) and receptors of 5-HT (Htr1aa, Htr2aa) were assessed by real-time PCR with reverse transcription. The short daylight exposure caused masculinization of females, reduced body weight, and motor activity in the "novel tank diving" test, but did not affect the 5-HT system of the brain. Long-term pCPA treatment had no effect on sex and body weight, significantly reduced the 5-HIAA level, but increased Tph1a and Tph2 gene expression in the brain. No effects of the interaction of short daylight and pCPA exposure on the sex, body weight, behavior, and 5-HT system of the brain were found. Thus, a moderate decrease in TPH activity cannot potentiate the negative effects of short daylight exposure on the sex, body weight, behavior, and 5-HT system of D. rerio.


Assuntos
Serotonina , Peixe-Zebra , Animais , Masculino , Feminino , Serotonina/farmacologia , Serotonina/metabolismo , Peixe-Zebra/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Encéfalo/metabolismo , Fenclonina/farmacologia , Fenclonina/metabolismo , Peso Corporal
5.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677694

RESUMO

OBJECTIVE: To study the extraction process of agarwood active ingredients (AA) and investigate the safety and effectiveness of AA in the treatment of insomnia rats by nasal administration. METHOD: A ß-cyclodextrin (ß-CD) inclusion compound (a-ß-CD) was prepared from agarwood essential oil (AEO), and the preparation process was optimized and characterized. The safety of AA in nasal mucosa was evaluated through Bufo gargarizans maxillary mucosa and rat nasal mucosa models. Insomnia animal models were replicated by injecting p-chlorophenylalanine (PCPA), conducting behavioral tests, and detecting the expression levels of monoamine neurotransmitters (NE and 5-HT) and amino acids (GABA/Glu) in the rat hypothalamus. RESULTS: The optimum inclusion process conditions of ß-CD were as follows: the feeding ratio was 0.35:1.40 (g:g), the inclusion temperature was 45 °C, the inclusion time was 2 h, and the ICY% and IEO% were 53.78 ± 2.33% and 62.51 ± 3.21%, respectively. The inclusion ratio, temperature, and time are the three factors that have significant effects on the ICY% and IEO% of a-ß-CD. AA presented little damage to the nasal mucosa. AA increased the sleep rate, shortened the sleep latency, and prolonged the sleep time of the rats. The behavioral test results showed that AA could ameliorate depression in insomnia rats to a certain extent. The effect on the expression of monoamine neurotransmitters and amino acids in the hypothalamus of rats showed that AA could significantly reduce NE levels and increase the 5-HT level and GABA/Glu ratio in the hypothalamus of insomnia rats. CONCLUSION: The preparation of a-ß-CD from AEO can reduce its irritation, improve its stability, increase its curative effect, and facilitate its storage and transport. AA have certain therapeutic effects on insomnia. The mechanism of their effect on rat sleep may involve regulating the expression levels of monoamine neurotransmitters and amino acids in the hypothalamus.


Assuntos
Ciclodextrinas , Óleos Voláteis , Distúrbios do Início e da Manutenção do Sono , Animais , Ratos , Fenclonina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Serotonina , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico
6.
Psychopharmacology (Berl) ; 239(10): 3355-3366, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36063206

RESUMO

RATIONALE: Serotonin (5-HT) is a monoamine neuromodulator that plays a key role in the organization of the central nervous system. 5-HT alterations may be associated to the emergence of social deficits and psychiatric disorders, including anxiety, depression, and substance abuse disorders. Notably, disruption of the 5-HT system during sensitive periods of development seems to exert long-term consequences, including altered anxiety responses and problematic use of alcohol. OBJECTIVE: We analyzed, in mice, the effects of transient 5-HT depletion at gestation (a developmental stage when medial prefrontal cortex (mPFC) 5-HT levels depend exclusively on placental 5-HT availability) on 5-HT central synthesis and reuptake at weaning. We also explored if 5-HT disruption at the embryonic stage influences behavioral outcomes that may serve as a proxy for autistic- or anxiety-like phenotypes. METHODS: C57/BL6 male and female mice, born from dams treated with a 5-HT synthesis inhibitor (PCPA; 4-Chloro-DL-phenylalanine methyl ester hydrochloride) at gestational days (G)13.5-16.5, were subjected to a behavioral battery that assesses social preference and novelty, compulsive behavior, stereotypies, and ethanol's anti-anxiety effects, at postnatal days (P) 21-28. Afterwards, expression of the genes that encode for 5-HT synthesis (Tph2) and SERT (5-HT transporter) were analyzed in mPFC via real-time RT-PCR. Dopamine 2 receptor (D2R) expression was also analyzed via RT-PCR to further explore possible effects of PCPA on dopaminergic transmission. RESULTS: Transient 5-HT disruption at G13.5-16.5 reduced Tph2 expression of both male and female mice in mPFC at P23. Notably, female mice also exhibited higher SERT expression and reduced D2R expression in mPFC. Mice derived from 5-HT depleted dams displayed heightened compulsive behavior at P21, when compared to control mice. Alcohol anti-anxiety effects at early adolescence (P28) were exhibited by mice derived from 5-HT depleted dams, but not by control counterparts. No social deficits or stereotyped behaviors were observed. CONCLUSION: Transient 5-HT inhibition at gestation resulted in altered expression of genes involved in 5-HT synthesis and reuptake in mPFC at weaning, a period in which the 5-HT system is still developing. These alterations may exert lingering effects, which translate to significant compulsivity and heightened sensitivity to the anxiolytic effects of alcohol at early adolescence.


Assuntos
Ansiolíticos , Serotonina , Animais , Ansiolíticos/farmacologia , Comportamento Animal , Dopamina/metabolismo , Etanol/farmacologia , Feminino , Fenclonina/farmacologia , Humanos , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Piridinolcarbamato , Serotonina/metabolismo , Desmame
7.
Eur J Pharmacol ; 928: 175092, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35697149

RESUMO

Brain monoamines are reported to regulate body temperature and food intake. The objective of this study was to investigate the mechanism of brain monoamine metabolism in taurine-induced hypothermia and appetite suppression. In Experiment 1, 5-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). In Experiment 2, the chicks were ICV injected with saline, taurine, fusaric acid (dopamine-ß-hydroxylase inhibitor: 558 nmol), or taurine with fusaric acid. In Experiment 3, the chicks were ICV injected with saline, taurine, para-chlorophenylalanine (PCPA, tryptophan hydroxylase inhibitor: 400 nmol), or taurine with PCPA. In Experiment 4, the chicks were ICV injected with saline, taurine, clorgyline (monoamine oxidase inhibitor: 81 nmol), or taurine with clorgyline. Central taurine lowered rectal temperature at 30 min post-injection and increased norepinephrine in the brainstem and its metabolite 3-methoxy-4-hydroxyphenylglycol in both the diencephalon and brainstem. Similarly, taurine treatment induced increases in serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid in the diencephalon. Fusaric acid completely and PCPA partially, but not clorgyline, attenuated taurine-induced hypothermia. The anorexigenic effect of taurine was partially attenuated by PCPA, but not fusaric acid nor clorgyline. In conclusion, central taurine activates dopamine-ß-hydroxylase and tryptophan hydroxylase to produce norepinephrine and 5-HT, and then induces hypothermia, but 5-HT alone may be linked with taurine-induced anorexia in chicks.


Assuntos
Hipotermia , Animais , Galinhas/metabolismo , Dopamina/farmacologia , Ingestão de Alimentos , Fenclonina/farmacologia , Hipotermia/induzido quimicamente , Masculino , Norepinefrina/farmacologia , Serotonina/metabolismo , Taurina/farmacologia , Triptofano Hidroxilase/farmacologia
8.
Neurochem Res ; 47(3): 574-589, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34661797

RESUMO

Gut microbiota homeostasis in the organism and insomnia have been reported to influence each other. In the study, a method of 16S rRNA gene sequencing combined with ultra-high performance liquid chromatography-mass/mass spectrometry was adopted to evaluate the effects of Lilium brownie (LB) on intestinal flora and metabolic profiles of serum, hypothalamus and hippocampus in insomnia rat induced by p­chlorophenylalanine (PCPA). It was observed that the imbalance in the diversity and abundance of gut microbiota induced by PCPA was restored after LB intervention. Among these, the Porphyromonadaceae, Lactobacillus and Escherichia were significantly adjusted at the genus level by PCPA and LB, respectively. It was also found that the most of metabolic phenotypes in serum, hypothalamus and hippocampus perturbed by PCPA were regulated towards normal after LB intervention, especially 5-hydroxy-L-tryptophan of the hypothalamus involving in 5-HT metabolism. Moreover, the arachidonic acid metabolism in serum, hypothalamus and hippocampus, and the serotonergic synapse in hypothalamus and hippocampus were the most fundamentally and significantly affected pathways after LB intervention. The results of correlation analysis showed that several floras including Pseudoruegeria have an outstanding contribution to the change of differential metabolites. In brief, the results confirm that gut microbiota is significantly returned to normal and may interact with the corresponding metabolites to relieve insomnia under LB intervention.


Assuntos
Microbioma Gastrointestinal , Lilium , Distúrbios do Início e da Manutenção do Sono , Animais , Cromatografia Líquida , DNA Ribossômico/farmacologia , Fenclonina/farmacologia , Hipocampo , Hipotálamo , Lilium/genética , Metaboloma , Metabolômica/métodos , RNA Ribossômico 16S/genética , Ratos , Espectrometria de Massas em Tandem
9.
Mol Biol (Mosk) ; 55(4): 660-666, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34432783

RESUMO

Fundamental neurophysiological processes are often studied using Danio rerio fish as a model. A selective inhibitor of striatal-enriched protein tyrosine phosphatase (STEP) reduces serotonin metabolism in the D. rerio brain. Both STEP and serotonin are involved in the development of neurodegenerative behavioral disorders. Reduction or elevation of the serotonin level in the brain of mice caused by the administration of p-chlorophenylalanine or pargyline, respectively, results in a decrease in the level of ptpn5 mRNA in the striatum, ptpn5 being the gene encoding STEP. However, it has not been established whether this occurs in other organisms. We studied the effect of inhibitors of synthesis (p-chlorophenylalanine) and degradation (pargyline) of serotonin on the expression of the ptpn5 gene and the activity of STEP in the brain of D. rerio. The fish were placed in water containing p-chlorophenylalanine (2 mg/L) or pargyline (0.5 mg/L) for 72 hours, and control subjects were kept in aquarium water. The p-chlorophenylalanine treatment decreased the serotonin level in the brain fourfold, whereas pargyline increased the level of this transmitter sixfold. Both p-chlorophenylalanine and pargyline decrease STEP activity in the D. rerio brain, without affecting the level of the ptpn5 mRNA gene. Thus, interaction between STEP and the serotonin system is observed in both mammals and fish, which indicates the similarity of the regulation processes in vertebrates.


Assuntos
Pargilina , Peixe-Zebra , Animais , Encéfalo , Fenclonina/farmacologia , Camundongos , Proteínas Tirosina Fosfatases , Peixe-Zebra/genética
10.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070942

RESUMO

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Assuntos
Arginina/farmacologia , Ácido Gástrico/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Prótons , Serotonina/biossíntese , Linhagem Celular Tumoral , Fenclonina/farmacologia , Expressão Gênica , Granisetron/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células Parietais Gástricas/citologia , Células Parietais Gástricas/metabolismo , Inibidores de Proteases/farmacologia , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Estômago/citologia , Estômago/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/antagonistas & inibidores , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
11.
Acta Neuropsychiatr ; 33(3): 148-155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33593455

RESUMO

OBJECTIVE: Whereas numerous experimental and clinical studies suggest a complex involvement of serotonin in the regulation of anxiety, it remains to be clarified if the dominating impact of this transmitter is best described as anxiety-reducing or anxiety-promoting. The aim of this study was to assess the impact of serotonin depletion on acquisition, consolidation, and expression of conditioned fear. METHODS: Male Sprague-Dawley rats were exposed to foot shocks as unconditioned stimulus and assessed with respect to freezing behaviour when re-subjected to context. Serotonin depletion was achieved by administration of a serotonin synthesis inhibitor, para-chlorophenylalanine (PCPA) (300 mg/kg daily × 3), (i) throughout the period from (and including) acquisition to (and including) expression, (ii) during acquisition but not expression, (iii) after acquisition only, and (iv) during expression only. RESULTS: The time spent freezing was significantly reduced in animals that were serotonin-depleted during the entire period from (and including) acquisition to (and including) expression, as well as in those being serotonin-depleted during either acquisition only or expression only. In contrast, PCPA administrated immediately after acquisition, that is during memory consolidation, did not impact the expression of conditioned fear. CONCLUSION: Intact serotonergic neurotransmission is important for both acquisition and expression of context-conditioned fear.


Assuntos
Medo/efeitos dos fármacos , Fenclonina/farmacologia , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Animais , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Condicionamento Psicológico , Modelos Animais de Doenças , Medo/psicologia , Fenclonina/administração & dosagem , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina/deficiência , Antagonistas da Serotonina/administração & dosagem
12.
Int J Dev Neurosci ; 81(2): 179-190, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33404066

RESUMO

A survey of the literature indicates that the developmental disruptions in serotonin (5-HT) levels can influence the brain development and the function. To the best of our knowledge, so far, there are a few studies about the effects of developmental period 5-HT depletion on cognition and behavior of adult male and female rats. Therefore, in the present study, we examined the effects of postnatal days (PND 10-20) administration of para-chlorophenylalanine (PCPA, 100 mg/kg, s.c) a 5-HT synthesis inhibitor, on anxiety-related behaviors, pain sensitivity, short-term recognition memory, and hippocampal and prefrontal cortex (PFC) brain-derived neurotrophic factor (BDNF) mRNA expression in adult male and female rats. Novel object recognition memory (NORM) and behavioral parameters (anxiety-like behaviors and pain sensitivity) were evaluated in early adulthood and after that, the hippocampi and PFC of the rat's brain were removed for the determination of BDNF mRNA expression. Our results indicated that the postnatal period administration of PCPA impaired short-term NORM. The postnatal developmental period treatment with PCPA also increased anxiety-like behaviors in the open field and elevated plus maze (EPM) tests. Postnatal PCPA treatment increased pain sensitivity in the hot plate test in both male and female rats, especially in female animals. In addition, postnatal days serotonin depletion decreased BDNF level in the hippocampus and PFC of both male and female rats. These findings demonstrate that serotonin plays the main role in neurodevelopment, cognitive functions, and behavior. Therefore, serotonergic system dysregulation during the developmental periods may have more adverse influences on the brain development of rats.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Reconhecimento Psicológico/fisiologia , Serotonina/metabolismo , Animais , Ansiedade/metabolismo , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Feminino , Fenclonina/farmacologia , Masculino , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Fatores Sexuais
13.
Behav Pharmacol ; 31(8): 768-775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32897889

RESUMO

Adolescent exposure to caffeine has been shown to decrease immobility in the forced swim test, suggesting and antidepressant-like effect of caffeine; however, studies have produced different results with regard to caffeine-induced active behaviors. The present study attempted to clarify the possible neurochemical mechanisms of caffeine's action by selectively depleting norepinephrine with alpha-methyl-p-tyrosine or serotonin with para-chlorophenylalanine in two separate experiments and assessing the ability for caffeine to alter anxiety-like and depressive-like behavior. Caffeine-treated adolescent male rats were exposed to caffeine (0.25 g/L) in their drinking water beginning on P28. A-methyl-p-tyrosine, para-chlorophenylalanine, or saline were administered prior to light-dark, open field, and forced swim testing beginning on P45. Caffeine-induced reductions in immobility and increases in swimming in the forced swim test were reversed by both a-methyl-p-tyrosine and para-chlorophenylalanine. Caffeine-induced increases in crosses and rears were reversed by para-chlorophenylalanine but not alpha-methyl-p-tyrosine, whereas caffeine-induced increases in transitions in the LD test were reversed by alpha-methyl-p-tyrosine but not para-chlorophenylalanine. Taken together, these results suggest that caffeine-induced decreases in immobility in male rats requires both norepinephrine and serotonin as depletion of either prevents the induction of immobility by chronic caffeine.


Assuntos
Cafeína/farmacologia , Norepinefrina/metabolismo , Serotonina/metabolismo , Fatores Etários , Animais , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Cafeína/metabolismo , Depressão/tratamento farmacológico , Fenclonina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Norepinefrina/antagonistas & inibidores , Norepinefrina/fisiologia , Ratos , Ratos Sprague-Dawley , Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , alfa-Metiltirosina/farmacologia
14.
Psychopharmacology (Berl) ; 237(10): 3149-3159, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32617647

RESUMO

RATIONALE: Major depressive disorder is a psychiatric disorder that requires considerable attention, since it dramatically impairs the quality of life of the sufferers. The available treatments do not have the efficacy needed, often presenting several side effects. Organoselenium compounds and benzamides have presented some pharmacological properties, among them an antidepressant-like effect. OBJECTIVES AND METHODS: This study evaluated the antidepressant-like effect of N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), an organoselenium compound containing a benzamide moiety, on the forced swimming test (FST) and the tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in its effect. RESULTS: SePB, tested after different times (15-120 min) and doses (1-50 mg/kg, intragastrically (i.g.)), reduced immobility of male mice during FST and TST, without changing locomotor activity in the open-field test (OFT), demonstrating its antidepressant-like effect. SePB (10 mg/kg) also produced an antidepressant-like effect in female mice in the TST. The preadministration of the serotonin (5-HT) depletor p-chlorophenylalanine (pCPA; 100 mg/kg, intraperitoneal route (i.p.) once daily for 4 days) prevented the anti-immobility effect of SePB, indicating that the serotonergic system is involved in the SePB antidepressant-like effect. The preadministration of the selective serotonergic receptor antagonists WAY100635 (0.1 mg/kg, subcutaneous route (s.c.), a selective 5-HT1A receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), and ondansetron (1 mg/kg, i.p., a selective 5-HT3 receptor antagonist) also prevented the anti-immobility effect of SePB, demonstrating that these receptors are involved in the antidepressant-like effect of SePB. CONCLUSION: The search for new antidepressants drugs is a noteworthy goal. This study has described a new compound with an antidepressant-like effect, whose mechanism of action is related to modulation of the serotonergic system.


Assuntos
Antidepressivos/uso terapêutico , Benzamidas/uso terapêutico , Compostos Organosselênicos/uso terapêutico , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Animais , Antidepressivos/química , Benzamidas/química , Feminino , Fenclonina/farmacologia , Elevação dos Membros Posteriores/psicologia , Ketanserina/farmacologia , Masculino , Camundongos , Compostos Organosselênicos/química , Natação/psicologia
15.
Poult Sci ; 99(5): 2708-2717, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359608

RESUMO

Brooding behavior, a common characteristic of native breeds of the domestic chicken, is marked by elevated prolactin (PRL) levels, which is necessary for incubation and connected with changes in hypothalamic-pituitary-gonadal axis activity. Evidence indicates the serotoninergic system is a potent modulator of PRL secretion. The objective of this study is to investigate whether blocking serotonin synthesis with parachlorophenylalanine (PCPA) prevents incubation behavior in native Polish crested chickens. In addition, we examined the effect of PCPA on the gene expression of the gonadal and lactotrophic axes. Birds were stimulated to broodiness by artificial eggs in nests. At 34 wk of age (April: spring period), the hens were divided into 2 groups (14 hens in each group): control and PCPA-treated (50 mg/kg BW) group. After 5 wk of treatment, the artificial eggs were removed from the nests. Egg production, incubation activity, and levels of plasma ovarian steroids progesterone (P4), testosterone (T), estradiol (E2), and PRL were examined. At the end of the experiment (45 wk of age, June: summer period), ovarian characteristics and mRNA gene expression of gonadal (gonadotropin-releasing hormone [GnRH] I, luteinizing hormone [LH] ß, follicle-stimulating hormone [FSH] ß) and lactotrophic (vasoactive intestinal peptide [VIP], PRL) axes were measured by quantitative real-time PCR. Incubation activity was observed in the hens of both groups but with lower frequency in PCPA-treated birds. Moreover, the PCPA group had a higher cumulative egg production than the controls. During the first six and 8 wk of the experiment, levels of P4 and E2, respectively, were similar in both groups, but all concentrations increased in the PCPA-treated hens after this period. In addition, increased GnRH-I, LHß, and FSHß and decreased VIP mRNA expression was observed in the PCPA group compared with the controls. There were no differences in PRL mRNA expression, the PRL level, and ovarian morphometry between the 2 groups. These results indicate that blockage of serotonin synthesis by PCPA does not effectively prevent incubation in native Polish crested chickens. However, treatment with PCPA increased gonadal axis activity and improved reproductive performance.


Assuntos
Galinhas/fisiologia , Fenclonina/farmacologia , Lactotrofos/efeitos dos fármacos , Comportamento de Nidação/efeitos dos fármacos , Ovário/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Animais , Feminino , Lactotrofos/fisiologia , Ovário/fisiologia , Polônia , Serotonina/metabolismo
16.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197439

RESUMO

The processes of memory formation and its storage are extremely dynamic. Therefore, the determination of the nature and temporal evolution of the changes that underlie the molecular mechanisms of retrieval and cause reconsolidation of memory is the key to understanding memory formation. Retrieval induces the plasticity, which may result in reconsolidation of the original memory and needs critical molecular events to stabilize the memory or its extinction. 4-Chloro-DL-phenylalanine (P-chlorophenylalanine-PCPA) depresses the most limiting enzyme of serotonin synthesis the tryptophan hydroxylase. It is known that PCPA reduces the serotonin content in the brain up to 10 times in rats (see Methods). We hypothesized that the PCPA could behave the similar way in snails and could reduce the content of serotonin in snails. Therefore, we investigated the effect of PCPA injection on contextual memory reconsolidation using a protein synthesis blocker in snails after training according to two protocols of different intensities. The results obtained in training according to the first protocol using five electrical stimuli per day for 5 days showed that reminding the training environment against the background of injection of PCPA led to a significant decrease in contextual memory. At the same time, the results obtained in training according to the second protocol using three electrical stimuli per day for 5 days showed that reminding the training environment against the injection of PCPA did not result in a significant change in contextual memory. The obtain results allowed us to conclude that the mechanisms of processes developed during the reconsolidation of contextual memory after a reminding depend both on the intensity of learning and on the state of the serotonergic system.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fenclonina/farmacologia , Caracois Helix/metabolismo , Memória/efeitos dos fármacos , Triptofano Hidroxilase/antagonistas & inibidores , Animais , Triptofano Hidroxilase/metabolismo
17.
ACS Chem Neurosci ; 11(6): 952-959, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32107912

RESUMO

The inhibitor of tryptophan hydroxylase, para-chlorophenylalanine (PCPA), has been classically employed as a pharmacological tool to deplete serotonin (5-HT) in animal models and to evaluate whether this neurotransmitter is involved in the action of pharmacological compounds. PCPA is usually administrated by intraperitoneal (ip) injections, which are stressful and painful. To avoid ip injections, we designed and validated a protocol for PCPA oral administration. C57BL/6 elite male mice received PCPA during 7 days either ip or by giving the drug inside jelly cubes at an estimated dose of 500 mg/kg on days 1 and 2 and 250 mg/kg for the rest of the treatment. 5-HT levels decreased by 85% and 55% in the hippocampus of mice treated with oral or ip PCPA, respectively, whereas in the prefrontal cortex, 5-HT levels decreased by 65% (oral) and 50% (ip). Behavioral tests, like the forced swimming test (FST), the nestlet shredding test (NST), and the marble burying test (MBT), were performed. In the FST, mice received fluoxetine ip 30 min before the test. In mice with oral PCPA treatment, fluoxetine did not induce significant reductions of immobility, indicating that reduction of 5-HT levels was effective. No effect of ip or oral 5-HT depletion was observed in the NST nor in the MBT. In a second experiment, mice received oral PCPA for 8 weeks: again, serotonin levels were significantly decreased in both hippocampus and cortex, and effects on hippocampal neurogenesis replicated previous observations in hyposerotonergic mice. Therefore, neurochemical, behavioral, and neurogenic results allow us to validate this refined protocol for voluntary oral consumption of PCPA.


Assuntos
Fluoxetina , Serotonina , Animais , Fenclonina/farmacologia , Fluoxetina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese
18.
Behav Brain Res ; 379: 112302, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655095

RESUMO

The pattern of ketamine-induced locomotor activity varies substantially across ontogeny and according to sex. Although ketamine is classified as an NMDA channel blocker, it appears to stimulate the locomotor activity of both male and female rats via a monoaminergic mechanism. To more precisely determine the neural mechanisms underlying ketamine's actions, male and female preweanling and adolescent rats were pretreated with vehicle, the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA). After completion of the pretreatment regimen, the locomotor activating effects of saline, ketamine, d-amphetamine, and cocaine were assessed during a 2 h test session. In addition, the ability of AMPT and PCPA to reduce dorsal striatal DA and 5-HT content was measured in male and female preweanling, adolescent, and adult rats. Results showed that AMPT and PCPA reduced, but did not fully attenuate, the ketamine-induced locomotor activity of preweanling rats and female adolescent rats. Ketamine (20 and 40 mg/kg) caused a minimal amount of locomotor activity in male adolescent rats, and this effect was not significantly modified by AMPT or PCPA pretreatment. When compared to ketamine, d-amphetamine and cocaine produced different patterns of locomotor activity across ontogeny; moreover, AMPT and PCPA pretreatment affected psychostimulant- and ketamine-induced locomotion differently. When these results are considered together, it appears that both dopaminergic and serotonergic mechanisms mediate the ketamine-induced locomotor activity of preweanling and female adolescent rats. The dichotomous actions of ketamine relative to the psychostimulants in vehicle-, AMPT-, and PCPA-treated rats, suggests that ketamine modulates DA and 5-HT neurotransmission through an indirect mechanism.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Dextroanfetamina/farmacologia , Dopaminérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fenclonina/análogos & derivados , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Serotoninérgicos/farmacologia , alfa-Metiltirosina/farmacologia , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Dextroanfetamina/administração & dosagem , Dopaminérgicos/administração & dosagem , Interações Medicamentosas , Inibidores Enzimáticos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Fenclonina/administração & dosagem , Fenclonina/farmacologia , Ketamina/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Serotoninérgicos/administração & dosagem , alfa-Metiltirosina/administração & dosagem
19.
Sci Rep ; 9(1): 19500, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863005

RESUMO

High rates of acute and chronic pain are associated with traumatic brain injury (TBI), but mechanisms responsible for the association remain elusive. Recent data suggest dysregulated descending pain modulation circuitry could be involved. Based on these and other observations, we hypothesized that serotonin (5-HT)-dependent activation of spinal CXC Motif Chemokine Receptor 2 (CXCR2) may support TBI-related nociceptive sensitization in a mouse model of mild TBI (mTBI). We observed that systemic 5-HT depletion with p-chlorophenylalanine attenuated mechanical hypersensitivity seen after mTBI. Likewise, selective spinal 5-HT fiber depletion with 5,7-dihydroxytryptamine (5,7-DHT) reduced hypersensitivity after mTBI. Consistent with a role for spinal 5-HT3 serotonin receptors, intrathecal ondansetron administration after TBI dose-dependently attenuated nociceptive sensitization. Also, selective CXCR2 antagonist SCH527123 treatment attenuated mechanical hypersensitivity after mTBI. Furthermore, spinal CXCL1 and CXCL2 mRNA and protein levels were increased after mTBI as were GFAP and IBA-1 markers. Spinal 5,7-DHT application reduced both chemokine expression and glial activation. Our results suggest dual pathways for nociceptive sensitization after mTBI, direct 5-HT effect through 5-HT3 receptors and indirectly through upregulation of chemokine signaling. Designing novel clinical interventions against either the 5-HT3 mediated component or chemokine pathway may be beneficial in treating pain frequently seen in patients after mTBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , 5,7-Di-Hidroxitriptamina/farmacologia , Animais , Benzamidas/farmacologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Ciclobutanos/farmacologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fenclonina/farmacologia , Imuno-Histoquímica , Masculino , Camundongos , Ondansetron/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo
20.
Pak J Pharm Sci ; 32(3): 997-1003, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31278712

RESUMO

The aim of this study was to investigate the antiepileptic effects of duloxetine in the maximal electroshock test and convulsions induced by four compounds: Pentylenetetrazole, 3-mercaptopropionic acid, thiosemicarbazide, and bicuculline. Duloxetine exhibited moderate anticonvulsive activity with an ED50 (median effective dose) of 48.21 mg/kg in the maximal electroshock test in mice. The anticonvulsive action of duloxetine was also confirmed in chemical-induced seizure tests, where this drug decreased tonic convulsions. Single administration of duloxetine (6.25-25 mg/kg) significantly increased the anticonvulsant effects of valproate, carbamazepine, and oxcarbazepine in the maximal electroshock test. Furthermore, pretreatment with thiosemicarbazide (an inhibitor of GABA synthesis enzyme) significantly increased the ED50 of duloxetine, suggesting the GABAergic system may contribute to the anticonvulsive action of duloxetine. These results support the use of duloxetine in the treatment of coexisting depression and epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Cloridrato de Duloxetina/farmacologia , Epilepsia/tratamento farmacológico , Ácido 3-Mercaptopropiônico/farmacologia , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Antidepressivos/farmacologia , Carbamazepina/farmacologia , Depressão/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Cloridrato de Duloxetina/administração & dosagem , Cloridrato de Duloxetina/efeitos adversos , Eletrochoque/efeitos adversos , Fenclonina/farmacologia , GABAérgicos/farmacologia , Masculino , Camundongos , Síndromes Neurotóxicas/etiologia , Oxcarbazepina/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Semicarbazidas/farmacologia , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...